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Abstract
We construct a supersymmetrized version of the model to the radiation damping
introduced by the present authors (Mendes, Neves, Oliveira and Takakura 2005
Preprint hep-th/0503135). We discuss its symmetries and the corresponding
conserved Noether charges. It is shown that this supersymmetric version
provides a supersymmetric generalization of the Galilei algebra of the model.
We have shown that the supersymmetric action can be split into dynamically
independent external and internal sectors.

PACS numbers: 11.10.Ef, 41.60.−m

1. Introduction

A fundamental property of all charged particles is that electromagnetic energy is radiated
whenever they are accelerated. The recoil momentum of the photons emitted during this
process is equivalent to a reaction force corresponding to the self-interaction of the particle
with its own electromagnetic field, which originates radiation damping [1].

The process of radiation damping is important in many areas of electron accelerator
operation [3], like in recent experiments with intense-laser relativistic-electron scattering at
laser frequencies and field strengths where radiation reaction forces begin to become significant
[4, 5].

In [2], the present authors presented a new approach in the study of radiation damping,
introducing a Lagrangian formalism to the model in D = 2 + 1 dimensions given by

L = 1

2
mgij ẋi ẋj − γ

2
εij ẋi ẍj , i, j = 1, 2, (1)

where εij is the Levi-Civita antisymmetric metric, gij is the pseudo-Euclidean metric given by

g =
(

1 0
0 −1

)
, (2)
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and where, as will be the case throughout the paper, the Einstein convention on the summation
of repeated indices is employed. This formalism represents a new scenario in the study of this
very interesting system. The Lagrangian (1) describes, in the hyperbolic plane, the dissipative
system of a charge interacting with its own radiation, where the 2-system represents the
reservoir or heat bath coupled to the 1-system [2]. The model (1) was shown to have the
(2 + 1)-Galilean symmetry and the dynamical group structure associated with that system is
the SU(1, 1) [2]. Note that this Lagrangian is similar to the one discussed in [6] (that is a
special nonrelativistic limit of relativistic model of the particle with torsion investigated in [8]),
but in this case we have a pseudo-Euclidean metric and the radiation-damping constant, γ , is
the coupling constant of a Chern–Simons-like term. It is important to note that, despite the
results obtained in this paper being very closely related with the ones from [7], the difference
between them is not just the pseudo-Euclidean metric. The physical systems studied are
different, where the constant γ is not a simple coupling constant, but depends on the physical
properties of the charged particle, like its charge e and mass m, being related to the term in its
equation of motion which describes an interaction of the charge with its own radiation field.

In this paper, we study a supersymmetrized version of the model (1), where we employ
a supersymmetric enlargement of the Galilei algebra obtained in [2] and the supersymmetries
of the model are determined. We also introduce the split into ‘external’ and ‘internal’ degrees
of freedom of the supersymmetric model (1) in terms of new variables, where the radiation-
damping constant introduces non-commutativity in the coordinate sector. The dynamic splits
into the decoupled sum of the dynamics in the physical sector and in the auxiliary sector [2].

The paper is organized as follows. In section 2, we introduce the supersymmetric model
and their canonical structure. In section 3, the Noether charges associated with the symmetries
are obtained. In section 4, we have shown that the supersymmetric Lagrangian can be split
into ‘external’ and ‘internal’ degrees of freedom and obtain the symmetries associated with
each sector. In the final section, we present our concluding remarks and final comments.

2. The supersymmetric model and their canonical structure

To get the supersymmetric extension for this model, for the supersymmetric quantum
mechanics N = 1, let us introduce a real field Xi(t, θ) with a Grassmann variable θ

xi(t) → Xi(t, θ) = xi(t) + iθψ(t). (3)

Introducing the covariant derivative

D = ∂

∂θ
− iθ

∂

∂t
, (4)

we get the following supersymmetric extension from (1):

L̄ = i
∫

dθ
(m

2
gij ẊiDXj − γ

2
εij ẌiDXj

)

= m

2
gij ẋi ẋj − γ

2
ẋi ẍj + i

m

2
gijψiψ̇j + i

γ

2
εij ψ̇ iψ̇j . (5)

Due to the presence of a second-order time derivatives in the Lagrangian, we have to
introduce three momenta:

pi = ∂L̄

∂ẋi

− d

dt

∂L̄

∂ẍi

= mgij ẋj − γ εij ẍj , (6a)

p̃i = ∂L̄

∂ẍi

= γ

2
εij ẋj , (6b)
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πi = ∂L̄

∂ψ̇i

= −i
m

2
gijψj + iγ εij ψ̇j . (6c)

This suggests that 12 canonical variables {xi, ẋi , pi, p̃i;ψi, πi} should be employed.
However, the elements in this set of canonical variables are not independent, because our
model has two constraints (see equation (6b)) of the second class [9]

�i = ẋi +
2

γ
εij p̃j . (7)

The Hamiltonian formalism for the Lagrangian (5) can be written in the ten-dimensional phase
space {xi;pi; p̃i;ψi;πi}, using the Legendre transformation,

H̄ = ẋipi + ẍi p̃i + ψ̇ iπi − L̄

= Hb + Hf , (8)

where the Hamiltonian for the bosonic sector, Hb (obtained in [2]), is

Hb = 2m

γ 2
gij p̃i p̃j − 2

γ
piεij p̃j , (9)

and for the fermionic sector is

Hf = − i

2γ
εij

(
πi + i

m

2
gilψl

) (
πj + i

m

2
gjkψk

)
. (10)

Next, we want to investigate the canonical equations of motion and the Poisson algebra
of the model. But, due to the constraints (7) it is necessary to use the Dirac bracket [9]

{A,B}D = {A,B} − {A,�i}C−1
ij {�j,B}, (11)

where A,B can be either bosonic- or fermionic-valued differentiable functions of the
canonical variables {xi, ẋi , pi, p̃i;ψi, πi} and the matrix C is defined through the relation
Cij = {�i,�j }.

In particular, the fundamental Poisson bracket relations are replaced by the symplectic
structure depending on the choice of ten independent canonical variables. Choosing the
independent variables as ya = {xi, pi, p̃i;ψi, πi}, a = 1, . . . , 10, we get

{ya, yb}D = ωab, (12)

where

ω =




0 12 0 0 0
−12 0 0 0 0

0 0 γ

2 ε 0 0
0 0 0 0 −12

0 0 0 −12 0


 , (13)

with

12 =
(

1 0
0 1

)
, ε =

(
0 1

−1 0

)
, (14)

and 0 denotes the 2 × 2 null matrix.
The Hamiltonian equations of motion

ẏa = {ya, H̄ }D (15)
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take the form

ẋi = {xi, H̄ }D = − 2

γ
εijpj , (16a)

ṗi = {pi, H̄ }D = 0, (16b)

˙̃pi = {p̃i , H̄ }D = m

γ
gij p̃j − 1

2
pi, (16c)

ψ̇ i = {ψi, H̄ }D = i

γ
εij

(
πj + i

m

2
gjlψl

)
, (16d)

π̇i = {πi, H̄ }D = − m

2γ
gilεlj

(
πj + i

m

2
gjkψk

)
, (16e)

where H̄ is given by (8). To obtain the quantized form of the canonical commutation
relation (15) as well as the Heisenberg equations of motion, we perform the replacement

{y, y ′}D → 1

ih̄
[ŷ, ŷ ′], (17)

where ŷ, ŷ ′ denote the quantized variables.

3. The Noether charges and their symmetries

Let us consider a Lagrangian L̄(xi, ẋi , ẍi;ψi, ψ̇ i) which depends on the first and second time
derivatives. The variation of the action S = ∫

dtL̄ under the change xi → xi + δxi and
ψi → ψi + δψi , bosonic and fermionic variables respectively, takes the form

δS =
∫

δL̄ =
∫

dt

(
δxi

∂L̄

∂xi

+ δẋi

∂L̄

∂ẋi

+ δẍi

∂L̄

∂ẍi

+ δψi

∂L̄

∂ψi

+ δψ̇i

∂L̄

∂ψ̇ i

)

=
∫

dt
d

dt
(δxipi + δẋi p̃i + δψiπi) , (18)

from which we obtain the following formula for the generator:

C(t) = δxipi + δẋi p̃i + δψiπi, (19)

which is conserved
(

d
dt

C(t) = 0
)
.

Let us list the generators of the symmetry for the Lagrangian (5):

(i) Space translations: δxi = δi, δẋi = 0; δψi = δ̄i (δ̄i are Grassmannian), δψ̇i = 0, where δi

and δ̄i are respectively the translation shifts of the bosonic and fermionic variables. So,

Ct = δipi + δ̄iπi . (20)

But the Lagrangian (5) is quasi-invariant under space-translation transformations; in fact,

δt L̄ = δ̄i

d

dt

(
i
m

2
gijψj

)
. (21)

So the generators (20) are not conserved. However, as the nonconservation law takes the
form

d

dt
G(t) = d

dt

(t), (22)

we can introduce modified generators G̃ = G − 
, which are conserved. In this case, we
derive the following conserved generator:

G̃t = Piδi + �iδ̄i (23)
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where

Pi = pi and �i = πi − i
m

2
gijψj . (24)

(ii) Rotations: δrxi = −εij xjφb, δr ẋi = −εij ẋjφb; δrψi = −εijψjφf , where φb and φf are
respectively the rotation angles of the bosonic and fermionic variables, then

Gr = −εijpixjφb − εijpi ẋjφb − εijπiψjφf . (25)

Using the constraint equations (7), we find that

Gr = Jbφb − Jf φf (26)

where

Jb = xiεijpj − 2

γ
p̃2

i , Jf = −ψiεijπj . (27)

(iii) Galilei boosts: δvi
xi = vit, δvi

ẋi = vi; δvi
ψ = 0 (note that the Grassmannian variables

do not transform under Galilei boosts), then

Gvi
= vipit + vip̃i . (28)

But the Lagrangian (5) remains invariant up to a total time derivative under Galilei boosts
transformation:

δvi
L̄ = d

dt

(
mgij − γ

2
εij ẋi

)
vi. (29)

So using (22) we derive the following conserved generator:

G̃vi
= B̃ivi (30)

where

B̃i = pit + p̃i − mgij − γ

2
εij ẋi . (31)

Using the constraint equations (7), we get the following conserved generator:

B̃i = pit − mgijxj + 2p̃i . (32)

(iv) Time: δτ t = τ (where τ is the translation shift of the time variables).
As the Lagrangian of the model (5) does not explicitly depend on time, the conserved

quantity corresponding to the time translation is given by the Hamiltonian (8).
(v) Supersymmetry: δQxi = iεψi, δQẋi = iεψ̇i; δQψi = −εẋi (where ε is an infinitesimal
Grassmannian parameter), then

GQ = iεψipi + iεψ̇i p̃i − εẋiπi . (33)

However, the Lagrangian (5) remains also invariant up to a total time derivative under
supersymmetric transformation, so

δQL̄ = ε
d

dt

(
i
m

2
gij ẋiψj − i

γ

2
εij ẋi ψ̇j

)
. (34)

Using the relation (22) and introducing the constraint equations (7), we get the conserved
generator

G̃Q = Qε, (35)

then

Q = ipiψi − 2

γ
εij p̃i

(
πj + i

m

2
gjkψk

)
, (36)
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where the Poisson algebra of this supercharge is given by

− i

2
{Q,Q}D = Hb + Hf = H̄ (37)

which is the Hamiltonian of the model (see (8)).

4. Supersymmetry in external and internal sectors

Now, we will show that the supersymmetric Lagrangian (5) can be split into ‘external’ and
‘internal’ degrees of freedom dynamically independent as in [2]. To this end, following
Faddeev–Jackiw’s method of describing Lagrangians with higher order derivatives [10], we
describe, equivalently, the action (5) as

L̄(0) = 1

2
gij vivj − γ

2
εij vi v̇j +

i

2
gijψiψ̇j + iγ εij ψ̇ iρj − i

γ

2
εijρiρj + pi(ẋi − vi), (38)

where the field equation for ρi is purely algebraic and where ρi is fermionic (we put for
simplicity m = 1).

Now, analysing the first-order Lagrangian L̄(0), equation (38), from the symplectic point
of view [10], the Dirac brackets among the phase space variables ξa = {xi, pi, vi;ψi, ρi} are

{ξa, ξb}D = f −1
ab , (39)

where f −1
ab is the inverse of the symplectic matrix

f =




0 −12 0 0 0
12 0 0 0 0
0 0 γ ε 0 0
0 0 0 −ig iγ ε

0 0 0 iγ ε 0


 . (40)

So, for the fermionic sector of the Lagrangian (38), one obtains

{ψi, ψj }D = 0; {ψi, ρj }D = − i

γ
εij ; {ρi, ρj }D = i

γ
gij . (41)

The Dirac brackets for the bosonic sector are the same as the ones obtained in section 2.
In order to split (38) into external and internal sectors, the variables introduced in [7, 11]

are modified as

Qi = γ (gij vj − pi), Xi = xi + εijQj ,

Pi = pi, ψ̃ i = ψi − γgikεkjρj ,
(42)

giving the set of canonical Poisson brackets,

{Xi,Xj }D = −γ εij , {Pi, Pj }D = 0,

{Xi, Pj }D = δij , {Qi ,Qj }D = −γ εij ,
(43)

for the bosonic sector. For the fermionic sector, the new fermionic variables satisfy the
following Poisson brackets algebra:

{ψ̃ i, ψ̃j }D = igij , {ψ̃ i, ρj }D = 0. (44)
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Now, substituting (42) into (38) the action takes the form

L̄(0) = L̄
(0)
ext + L̄

(0)
int (45)

where

L̄
(0)
ext = PiẊi +

γ

2
εijPiṖ j − 1

2
gijPiPj +

i

2
gij ψ̃ i

˙̃ψj , (46)

L̄
(0)
int = 1

2γ
εijQiQ̇j +

1

2γ 2
gijQiQj + i

γ 2

2
gijρi ρ̇j − i

γ

2
εijρiρj . (47)

We see that our Lagrangian separates into two disconnected parts describing the ‘external’
and ‘internal’ degrees of freedom both describing supersymmetric models. Note that, while
original coordinates commute, {xi, xj } = 0, both the ‘external’ and ‘internal’ positions, Xi

and Qi , respectively, are non-commuting (see (43)).
Theses actions are invariant under the following set of supersymmetry transformations:

(i) for the external sector, equation (46), we get

δQPi = 0, δQψi = −εPi, δQXi = igij εψ̃j ; (48)

(ii) for the internal sector, equation (47), we get

δQQi = iγ εεijρj , δQρi = 1

γ 2
εgijQj , (49)

where ε is a constant Grassmann number.

The supercharge corresponding to (46), generator for the transformations (48), is given
by the formula

Qext = J 0
ext = δL̄

(0)
ext

δς̇i

δςi

δφ
= igij ψ̃ iPj , (50)

where J 0
ext is the conserved current and δφ is an infinitesimal parameter. The external

Hamiltonian can be obtained consistently as

H̄
(0)
ext = − i

2
{Qext,Qext}D = 1

2
gijPiPj . (51)

Similarly, the supercharge corresponding to (47), generator of the transformations (49),
is given by

Qint = J 0
int = δL̄

(0)
int

δς̇i

δςi

δφ
= − i

2
Qiρi, (52)

and our internal Hamiltonian is given by

H̄
(0)
int = − i

2
{Qint,Qint}D = − i

2γ 2
gijQiQj + i

γ

2
εijρiρj . (53)

5. Concluding remarks

In this paper, we have presented a complete formulation of a supersymmetrized version of
the model (1). We have started with the construction of the supersymmetric model (5) then,
using the Dirac formalism for constrained Hamiltonian systems, the equations of motion and
the canonical structure of the supersymmetric model are presented.
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Next, we construct the (2 + 1)-dimensional Galilean supersymmetry and supersymmetry
transformations of the variables appearing in the Lagrangian. Using Noether’s procedure, we
construct the conserved quantities associated with these symmetries, such as supercharges
(36), which are the generators of supersymmetry transformations.

Finally, introducing non-commutative coordinates (42) and using Faddeev–Jackiw’s
method, we see therefore that the supersymmetric action (5) can be split into dynamically
independent external and internal sectors (see (46), (47)). As we have shown, the external
(46) and the internal (47) sectors remain invariant under the supersymmetric transformations
(48) and (49), respectively, and the associated supercharge is constructed.
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